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Nearside-farside (NF) theory, originally developed in the energy domain for the time-independent description
of molecular collisions and chemical reactions, is applied to the plane wave packet (PWP) formulation of
time-dependent scattering. The NF theory decomposes the partial wave series representation for the time-
dependent PWP scattering amplitude into two time-dependent subamplitudes: one N, the other F. In addition,
NF local angular momentum (LAM) theory is applied to the PWP scattering amplitude. The novel concept
of a cumulative time-evolving differential cross section is introduced, in which the upper infinite time limit

of a half-Fourier transform is replaced by a finite time. In a similar way, a cumulative energy-evolving angular
distribution is defined. Application is made to the state-to-state reactioh,04(vi = 0, jj = 0) — HD(v; =

3,jf = 0) + D, whereuj, ji anduy, j; are vibrational and rotational quantum numbers for the initial and final
states, respectively. This reaction exhibits time-direct and time-delayed (by about 25 fs) collision mechanisms.
It is shown that the direct-time mechanism is N dominant scattering, whereas the time-delayed mechanism
exhibits characteristics of NF interference. The NF and LAM theories provide valuable insights into the
time-dependent properties of a reaction, as do snhapshots from a movie of the cumulative time-evolving
differential cross section.

1. Introduction method$®~47 to analyze the complicated interference patterns
often observed in differential cross sections under semiclassical

Theories of time-dependent (wave packet) and time-inde- nditions. i.e. when th rial wav fies for th tterin
pendent (energy-domain) scattering provide well-established conditions, 1.€., when the partial wave series for the scattering
amplitude contains a large number of numerically significant

procedures for understanding the dynamics of chemical reactions . .
(for recent reviews of the literature, see refsg). A recent terms. NF theory decomposes the scattering amplitude exactly

developmerft 2 is a generaplane ware packet (PWPjheory into a N subamplitude pkia F subamplitude, which have sim-

of elastic, inelastic, and reactive scattering (reviewed in ref 13). ggtt%rﬁﬁegf: tttT:r? ;Tii éuflrloar:]nﬁ:'éuses'usbt;r’:“ﬁ;ﬁd'g tg? f?(?rgnutlﬁé
It uses time-evolving wave packets to provide a physically 9 P ’

transparent visualizatierincluding movies-for the results from F ts)ubarmc)lgude,f or fro_m |nterferer;ce5bigwit-:én tge N flmdthF
energy-domain scattering calculations (and experiments). It doessunarmiI l]f des (lorr:ev:e\:vi; Sne;enrteri L A ’ )b enc?rr\]tryi €
this by locating a PWP in the entrance channel at the closestg0 C33%,3238,4?\,?,ﬁ' ?]fgutﬁ Ot ed uth ( “]{D?S eef NFto h
distance for which the interaction potential is negligible, letting ucea, Ich Turther extends the usetuiness o ech-
the wave packet evolve in time, and then projecting onto a probe niques for understanding the dynamics of molecular collisions.
PWP in the exit channel, again at the closest distance where 1h€ purpose of this paper is to apply NF and LAM theory
the interaction potential can be neglecte# The PWP theory  (Originally developed and applied in the energy-domain) to the
builds on earlier research using wave packets for reactive PWP time-evolving description of chemical reactions. The
scattering, e.g., refs +417. theoretical methods used in this paper are discussed in section

The PWP formulation provides, with the help of an energy 2. We _con_S|der the tlme-dep(_andent scatu_arlng_amplltude, its
filter, a time-evolving visualization of differential cross section ~ €XPansion in a Legendre partial wave series, time-dependent
that has been computed from a time-independent scatteringSCattering matrix elements and the time-dependent angular
theory. Furthermore, the PWP theory uses concepts analogoug'St”bUt'O”- We also discuss the Fourier transform relation
to those employed in time-independent scattering theory. For Detween these time-dependent quantities and the corresponding
example, the PWP theory employs time-evolving concepts suchtime-independent quantities. Section 2 also introduces the novel
as: time-dependent angular distributions, a partial wave seriesconcepts of @umulatve time-eolving differential cross section

representation of the time-dependent scattering amplitude, and®"d acumulatve energy-eolving angular distributiorfor which

time-dependent scattering matrix elements. upper infinite Ii.mits of half-Fogrier transforms are replaced by
Another development in scattering theory in the energy- flnlte. values. Finally we desprlbe hovy to NF and LAM analyze
domain has been the introduction péarside-farside (NF) the time-dependent scattering amplitude.
The theory developed in section 2, parts B, of this paper
T Part of the special issue “Donald G. Truhlar Festschrift”. is for a general state-to state reaction of the type
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A + BC(y;, jj, m) — AB(¢, j;, m ) + C from f(6r,E) and map it to the time domain as given ff§g,t).
The filter function used in section 3 has the propétt) — O
wherev; , ji , m and , js , M are the vibrational, rotational ~asE — . Note that different choices fdf(E) will generate
and helicity quantum numbers for the initial and final states, differentf(0r.t).
respectively. We apply the theory in section 3 to the reaction Itis also convenient in eq 2.2 to chodse 0 as a time before
A and BC have interacted. We can then asstiffigt) = O for
H+ Dy(y,=0,j;=0,m =0)— t < 0. Ast increases in eq 2.2, the exponential factor in the
HD(y;=3,j;=0,m =0)+D integrand will oscillate faster and faster, aiié,t) — O ast —
o by the Riemann-Lebesgue LemthdassumingF(E) and
Since both he|icity quantum numbers are zero, the time- f(@R,E) are well behaved]. Thus, in a numerical calculation, we
dependent scattering amplitude can be expanded in a basis se@nly expectf(fr,t) to be significantly different from zero for
of Legendre polynomials (section 2E), which leads to a simpler 0 < t < tmax, Wheretmax is a time at which the reaction has
development of the NF and LAM theory in section 2, parts F finished and AB and C are no longer interacting.
and G. Our results for the H D, reaction are described and Since F(E) is dimensionless, eq 2.2 shows thgdr,t) has
discussed in section 4. Our conclusions are given in section 5.dimensions oflength x energy unlike f(6r,E) which has the
We have chosen the # D, reaction because a recent stiidy ~ usual dimensions ofength However to keep the notation
has clearly identified two distinct mechanisms for this reaction Simple, we use the same symidior the different functions
(see also, refs 1, 37, 4416, and 49). One is a direct-recoil f(Or,E) and f(6r,t) and distinguish them by their differing
mechanism, in which H approaches B a mainly collinear arguments. This convention is also adopted in the paper for other
configuration, resulting in HD being scattered into the backward Physical quantities in the energy and time domains.
direction relative to the direction of the incoming H atom. The ~ By analogy with the differential cross section, eq 2.1, we
other mechanism is dominated by HD being scattered into the also define
forward direction and is due to a slow down in the translational
motion of the intermediate complex near the reaction barrier, 0(0r.t) = If(OrDI° (2.3)
resulting in a time delay of approximately 25 fs relative to the
time-direct mechanis?® (A complementary explanation can ~ Sincec(fr,t) has dimensions dengtt? x energy rather than
be given in terms of decaying Regge staté$+%). These time- lengtt?, we will not call o(0r,t) a “time-dependent differential
direct and time-delayed mechanisms offer an excellent op- Cross section”; instead, we will use the terms “time-dependent
portunity to make a detailed study of a chemical reaction from angular distribution” or “time-dependent scattering pattern”.
a time-dependent point of view. The inverse Fourier transform of eq 2.2 is

2. Theoretical Methods f(O.E) = 1 j“” f(Or.t) exp(EVH) dit
A. Introduction. Our starting point is the energy dependent- 2rhF(E)-°

gp gy aep . .
scattering amplitudef(fr,E), whereE is the total energy and (N.B., dimensions= length) (2.4)
Or is the reactive scattering angle, i.e., the angle between the
outgoing AB molecule and the incoming A atom. It is also
convenient for the following analysis to chooge= 0 so that
f(6r,E) = 0 for E < 0, i.e., the reactive scattering channg),
ji, M — u, j;, M is closed whenE < 0. There are many
computational methods in the literature for calculati(tiy,E)
over a (finite) range ofE values!™® The energy-dependent

differential cross section is given by

Equation 2.4 can be used in an alternative formulation of the
theory in which the starting point i§0g,t).12-12 In the limit,
E — o, the integral in eq 2.4 will tend to zero by the Riemann
Lebesgue lemn¥a[assumingdi(0r,t) is well behaved]. However,
in this limit we also haveF(E) — 0, resulting in the
indeterminate form 0/0 and a more detailed investigation is
necessary to find the limiting behavior &bg,E).

It is well-known there is no universal convention in the
literature for a Fourier transform and its inverse. In our

_ 2
0(0r ) = [f(0=.E)| 2.1) derivations above and below, the following form is convenient
Remarks: to use. If
(a) We have omitted the labe} , ji , m — v, jr , m from 1 - .
f(0r,E), 0(6r,E) and similar quantities in this paper to keep the G(t) = —1,2_/;00 9(E) exp(-iEVA) dE  (2.5)
notation simple. (27h)

(b) It is common, as is done in sections 3 and 4, to measure
E for a state-to state chemical reaction from the classical
minimum of the BC potential energy curve. Then the state-to- 1
state reactive scattering channel is closedEfer Einreshold Where 9(E) = 7
Eireshold > O is the larger of the rovibrational energies of (27h)
BC(Ui, ji ) and AB(Uf ' jf )

B. Time-Dependent Scattering Amplitude.We define a
time-dependent scattering amplituf{@g,t), wheret is the time,
by the half-Fourier transfori12

then

- G(t) exp(Et/h) dt (2.6)

C. Cumulative Time-Evolving Differential Cross Section.
We next define a cumulative time-evolving scattering amplitude
by modifying eq 2.4 to

1 t ' ; '
(6a) = [, F(EY(6:E) exp(-iEtih) dE WORE) = 5 rr gy o (Ont) eXPEEL) ct
(N.B., dimensions= length x energy) (2.2) (N.B., dimensions= length ) (2.7)

In eq 2.2,F(E) is a dimensionless complex-valued energy filter The corresponding cumulative time-evolving differential cross
function!t12which is chosen to extract interesting information section is then
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o(Ox.E) = |ft(QR,E)|2 (2.8) In a similar way, we can make a partial wave expansion for

f(Or,t) by writing™1—13

Note thatfy(Or,E) — f(Or,E) andoi(6r,E) — 0(Or,E) ast — . 1

The definitions (2.7) and (2.8) allow us to see how features in I &

o(0r,E) arise asoy(0r,E) evolves fromt = 0 tot = . In fOr) Zi;(z‘] T LSOP(costr)  (2.13)

particular, if oy(0r,E) is plotted at different time steps, we can _

create a movie in which each frame corresponds to each timewhere Si(t) is a modified time-dependent scattering matrix

step and hence see visually hoyfg,E) evolves ag — o (in element [N.B., n&k(E) on the rhs of eq 2.13]. Substituting eqs

practice tot = tmax ). 2.12 and 2.13 into eq 2.2 leads to

It is important to note thak(6r,E) and o(6r,E) shouldnot FE)

be interpreted as the scattering amplitude and differential crossa 4y — [~ "\B& a

section respectively at a fixed timteand a fixed energ¥, as S0 fo k(E) S/(E) exp(C-iEvR) dE

this would contradict the energtime uncertainty relatioft (N.B., dimensions= length x energy) (2.14)

In factfi(0r,E) contains contributions from many energies. This

can be seen by substituting eq 2.2 into eq 2.7, which gives  Using egs 2.5 and 2.6, the inverse Fourier transformation of eq
214 is

(O E) = ﬁ(a [t [ dEFE)(OE)
expliE — EY/H] (2.9)

_ KE) oo -
5(E) = ﬁ % 17 8(t) exp(iEUR) dt

(N.B., dimensionless) (2.15)
Whent is close to zero in eq 2.9, the exponential factor is slowly

oscillating, and many energies will make a significant numerical ~ We can also define cumulative energy-evolving and cumula-
contribution to the rhs. As increases, the exponential factor tive time-evolving scattering matrix elements by replacing the
oscillates faster and the contributing energies become concendnfinite upper limits in egs 2.14 and 2.15 Byandt respectively.
trated arouncE’ = E, until for t — « the integrand becomes  For example

proportional to a delta function il — E and the only

- E ~ K(E) - .
contributing energy i€ = E. O __1 KB S.(t") exp(EL/R) dt’
D. Cumulative Energy-Evolving Angular Distribution. In =) ZﬁhF(E)ﬂ) (1) expl )
a similar way, we can use eq 2.2 to define a cumulative energy- (N.B., dimensionless) (2.16)

evolving scattering amplitude . N
with $)(E) = S(E). The cumulative time-evolving scattering

f(Op) = LE F(E)(0,E) expiE'th) dE amplitude fi(6r,E), is then given by the partial wave expansion

(N.B., dimensions= length x energy) (2.10) 1 2 =0
f(0nE) = '—Zo(ZJ +1)30(E)P(cosly)  (2.17)
and a cumulative energy-evolving angular distribution 2ik(E)E=

F. Nearside—Farside Theory. It is often found that(6r,E),
when plotted vsOr at a fixed E, possesses a complicated
interference structure, which contains important information on
the reaction dynamics. A common difficulty in trying to
understand the physical origin of this interference structure is

Wa{) oglur;derstan?|?ghthe gynam|cs of fchhemlcal rlea_ct|or_13 'S that the partial wave series (eq 2.12) contains a large number
probably less useful than the concept of the cumulative time- of numerically significant terms under semiclassical conditions.
evolving differential cross section described in section 2C. Note |, this situation, it can be helpful to apply a nearsidarside

that the rhs of eq 2.11 contains contributions from a spread of (NF) decomposition td(6g,E).19-40

times [as substituting eq 2.4 into eq 2.11 shows]. We now show that NF theory can also be applied(éx.t)

E. _Paryal Wa_ve Sgrleso.llz oEr a;]ppl)_llc_:atlon to the H- Do and hence used to provide physical insight into structure seen
reaction in sections 3 and 4, the helicity quantum numbers - o(Ort) when it is plotted v at fixed values of.

and nx for the transition are both equal to zero. This means The NF decomposition di@=.t) is aiven by9—40
that f(6r,E) can be expanded in a basis set of Legendre P dMOrD) 1s g y

polynomials. We can write f(Ort) = f(OR,t) + f(ORr,1) (2.18)

oe(Or) = Ife(Or D) (2.11)

We could use egs 2.10 and 2.11 to study lag{#r,t) evolves
in energy fromk = 0 to E = Enay for example. However, this

1 2 where the NF time-dependent subamplitudes are
(O E) = ——Y (2 + 1)S(E)P(costr — 62) P P
R 2ikE) ’ )

f(Omt) = 1S (23 + 1)3,1)Q,(cosby) (2.19)
or N,F\Y R ZI; SJ J R .

1 2 . with (6r = 0,7)
f(Or.E) = _—ZO(ZJ + 1)S,(E)P,(cosby) (2.12) .
2KE)= Q,(cosby) = %[PJ(COSQR) + %QJ(COSQR) (2.20)
wherek(E) is the initial translational wavenumbeis the total
angular momentum quantum numb8&(E) = exp(ird)S(E) is and Q;(cos 0R) is a Legendre function of the second kind of

a modified energy-dependent scattering matrix element anddegree J. The corresponding NF time-dependent angular
Pj(e) is a Legendre polynomial of degrde distributions are lr = 0,7)
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onOrt) = |fN,F(0R!t)|2 (2.21)
In many casesgn(Or,t) or oe(Or,t) vary more slowly withOgr
(at a fixedt) than doess(Or,t), which enables one to identify
angular regions of N or F dominance or regions where there is
NF interference. The results of a NF decompositionf(6g,t)
are reported in section 4 at four valuestof

G. Local Angular Momentum Analysis. Local angular
momentum (LAM) analysis is a new procedure for extracting
physical information from a partial wave seri€s®.3840The
LAM is the value of the total angular momentum variable that
mainly contributes to the scattering at a giv@gn For f(6r,E),
it is defined by®:36:38.40

d(argf(6x.E))

LAM(0oE) ==
R

(2.22)

where the arg in eq 2.22 is not necessarily the principal value
in order that the derivative be well-defined. By analogy with
eq 2.22, we can define a LAM fd(6r,t): it is given by

d(argf(fr.t))

LAM(0p) =
R

(2.23)

In general, LAM@R,t) O {J = 0,1,2,.}; instead, LAM@R,t) is
real (positive or negative).

It is found in section 4 that LAM{R,t) often possesses a
complicated interference pattern when plotted ag#irstt fixed
t. It is then useful to define N and F LAMs for the N and F
subamplitudes, respectively. We have

_ d(ardy ((Or:1)

LAM  (Or:t) = do
R

(2.24)

Positive values of LAM@r,t) can be identified with the
anticlockwise motion of travelling angular waves around the
reaction zone and negative values to their clockwise mo-
tion 35:36.:38.40This means that positive and negative LAM()
values can be attributed to F and N dominance, respectively,
and in general to attractive and repulsive forces, respectively.
This leads to a useful property of a NF LAM analysis: it should
in general be consistent with, and in certain cases clarify, the
findings of a NF analysis of the angular distributions, as already
described in section 2F.

3. Calculations

We performed scattering calculations for the state-to-state

reaction, H+ Da(y; = 0,j; = 0,m = 0) — HD(s; = 3, js = 0,

my = 0) + D, using the potential energy surface number 2 of
Boothroyd et aP? with masses ofny = 1.008 u andmp =
2.014 u. First, we compute®i(E) for J= 0 (1) 30 on the energy
grid, E = 1.52(0.01)2.50 eV. HerE is measured with respect
to the classical minimum of thepotential energy curve. Since
the rovibrational energy&(vi,ji), of Da(v; = 0, j; = 0) is 0.192

eV and the rovibrational energ(zs,js), of HD(zs = 3, js = 0)

is 1.520 eV, the reaction is closed fér< 1.520 eV. The energy-

domain scattering matrix elements were computed by a state-

to-state wave packet method developed by one of us.

Monks et al.

Second, we interpolated the modulus and phasg(&) and
then evaluate®(t) numerically from the half-Fourier transform
(eq 2.14) for the time grid 0, 0.48 (0.68), 150 fs. The filter
function, F(E), is given by112

1
2V/2n

wherek;(E) andz are the initial translational wavenumber and
distance, respectively, and likewise for the final quantities,
ki(E), z. We setz = 6 ap in eq 2.25; this value localizes the
center of the initial PWP at a distance 66 ap on thez axis
with a width determined byF(E)|. In addition, we used the
valuez = 6 ap which distributes the centers of the probe PWPs
around a sphere of radiusag in the exit channel. In addition,
k(E) = {2uxvz[E — E(vsj9)]} V4R, with s =i, f where ux vz

= mx(my + my)/(mx + my + my) is the reduced mass of the
X + YZ channel. The functiong(E) is a distributed ap-
proximating functional (DAF) defined By12

F(E) = 9(B) explilk(B)z + k(B)zl} (2.25)

M/2
_ _ 1
9(E) = exp(~ EZ)E E2ml, E’= 5(E — Ey)°o”
m=

with parameterd/ = 88, Ep = 1.65 eV, andr = 1/0.07 eV'1,
which is a constant not related to the cross section. This DAF
is approximately unity from the opening of the reaction channel
atE = 1.520 eV toE = 2.2 eV when it decreases monotonically
to approximately 10* at E = 2.5 eV. As an additional check
on our numerics, we regenerafgg(E)} by applying the inverse
Fourier transform (eq 2.15) to tH&(t)} .

Finally we calculated the full and NF time-dependent
scattering amplitudes from their partial wave series representa-
tions, eqs 2.13 and 2.19. The full and NF time-dependent LAMs
are then obtained from eq 2.23 and 2.24 respectively, with the
full and NF time-dependent angular distributions being given
by egs 2.3 and 2.21 respectively. The cumulative time-evolving
scattering amplitude, (2.7), also requires an additional quadrature
over time in order to compute the cumulative time-evolving
differential cross section, (2.8). We found it convenient to use
the partial wave representation, eqs 2.16 and 2.17, to accomplish
this, by numerically evaluating th&®(E) for J =10, 1, 2, ...,

30 at different times.

4, Results

A. NF Analysis of Time-Dependent Angular Distributions.
Perspective plots ofi(Og,t) sin Or and oy (Or,t) sin Or are
shown in Figure 1 front = 0 fs tot = 99.5 fs. The angular
distributions have been multiplied by s in order to contain
large features in the scatterfigclose todr = 0° and Or =
18C°. Time slices of Figure 1 for the logarithm of the full and
NF angular distributions &t= 29.8, 50.3, 70.1, and 102.2 fs
are displayed in Figure 2 (N.B., no stix factor).

Figure 1 shows that the reaction startst at 20 fs with a
large peak appearing at backward anglestfer 35 fs. Ast
increases, the backward peak disappears and the scattering
moves toward the forward direction, with a large oscillatory
peak being present far~ 60 fs, i.e., a time delay of about 25
fs relative to the direct scattering. Asncreases further, the
forward peak also disappears and the reaction is essentially over

particular, the reactant-product decoupling equations were solvedby t = 99.5 fs. The perspective plots for 99.5 fs tot = 150

in a form that partitions the Schdinger equation for reactive
scattering into reactant, strong interaction and product regions.
This method has been applied to a variety of chemical reactions
in refs 6-10, 12, 18, and 5358.

fs look the same as those for= 99.5 fs.

Figure 2a shows that the backward peak &29.8 fs is N
dominated. This is the expected behavior for direct (i.e., short-
time) reaction dynamics. Indeed, an approximate N theory, the
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Figure 1. Perspective plots of (a)(0r,t) Sin Og, (b) on(Or,t) SiN Og,
and (c)or(fr,t) sin Or vs Or andt. The plots fort > 99.5 fs tot = 150
fs look the same as those for= 99.5 fs. ] 1 1

0 45 % 135 180
semiclassical optical modé}2%3*has successfully reproduced
the backward angle scattering in fixed-energy differential cross eR / deg

sections for several simple reactions, includingHD,.2° _ e =
Figure 2. Logarithmic plots ofa(6g,t) (solid line), on(Or,t) (dashed

Figures 1c and 2a suggest that the F subamplitude, althoughy, " 14,19 (dotted line) vty for (a)t = 29.8 s, (b)t = 50.3
smaller in magnitude than the N subamplitude, also makes ass ¢yt = 70.1 s, and (d) = 102.2 fs.

nonnegligible contribution to the scattering at backward angles.
However, this is likely to be a (well-understood) exaniplef Or: it is NF interference between the NF subamplitudes that
the NF decomposition overestimating the F contribution at gives rise to the pronounced oscillations in the forward direction.
backward angles. The overestimation arises because the NHt is likely this oscillatory forward angle scattering can be
cross sections diverge logarithmicallys— 18C°. This causes interpreted as alory, since a uniform semiclassical analy-
the F angular distribution to increase in the backward direction sis?’3940 has provef/ 6 that a forward glory is present in
rather than to decrease, and as a consequence, o184 < o(Or,E) atE = 2.00 eV.
178, the N angular distribution is reduced in magnitude, before At t = 102.2 fs, Figures 1 and 2d demonstrate that the full
it too diverges forfr = 178. We have found that a resum- and NF angular distributions have become very small in
matior?®36.38of the partial wave series (eq 2.13) “cleans” the magnitude and the reaction is largely over. Nevertheless the
NF curves in Figure 2a of nonphysical oscillations, thereby full cross section, although small, still possesses regular
improving the usefulness of the NF decomposition; this will be oscillations, in the forward direction, which clearly arise from
illustrated and discussed in a future paper. NF interference.

Parts a and b of Figure 2 show that the situation is quite  B. LAM Analysis of Time-Dependent Scattering Ampli-
different for the large time-delayed peak at forward angles where tudes. Figure 3 shows plots of LAMir,t) and LAMy (6r.t)
the N and F angular distributions vary relatively slowly with for the same times as Figure 2, namely 29.8, 50.3, 70.1,
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Figure 3. Plots of LAM(6g,t) (solid line), LAMn(6r,t) (dashed line), ”;'C 2x 107 ’
and LAM(6r,t) (dotted line) v for (a)t = 29.8 fs, (b)t = 50.3 fs, <
(¢)t=70.1fs, and (d} = 102.2 fs. e 16 -
o i - 6/ deg

102.2 fs. At the first timet = 29.8 fs, the full LAM@R,t) is
negative at most angles and so the scattering is N dominated.
An exception is a small angular region arouhd= 145, where 22
LAM( 6r,t) becomes positive. There is similar behavior at the Figure 4. Plots ofoi(0r,E) sin 0r vs E and6r for (a)t = 29.8 fs, (b)
three other times, with the scattering usually being N dominated. t = 50-3 fs, ()t = 70.1 fs, and (d) = 102.2 fs. Note that the scale
Notice that LAM\(6r.t) and LAMK(6r,t) generally vary more along thez-axis of _plot ais smaller than the scales of plotsdy to

- allow a more detailed view of the structure.
slowly with 6r than does LAM@g,t). Thus, the regular
oscillations present in LAMIg,t) at forward angles are usually 3, we see that the NF LAM results are consistent with the NF
caused by NF interference. The above LAM interpretation is analyses of the angular distributions. An advantage of the LAM
confirmed by a resummatiéh36-38of the partial wave series  analysis is that it is easier to identify angular regions of N or F
(2.13) which, as for the NF angular distributions, “cleans” the dominance, when these are less apparent in the angular
NF LAM curves of nonphysical oscillations. When viewing distributions.
Figure 3, it should also be remembete#+°that a F LAM Parts b-d of Figure 3 show that the LAN6g,t) curves
loses its physical significance in angular regions whe(ér,t) decrease in magnitude, roughly monotonicallygasncreases
is negligible compared ta(0r,t). On comparing Figures 2 and  toward 180. This is the behavior expected for direct repulsive

180
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interactions of the hard-sphere type. Indeed the N LAMs can
be approximately fitted by the classical-mechanical hard-spher
relation, LAMN(Or,t) = —LAM max C0SPr/2). In contrast, the
LAM g(Or,t) curves are approximately constant at forward
scattering angles, with values in the range 2&6.8 for Figure
3b and 23.6-27.6 for Figure 3c; i.e., the NF LAM analysis has
identified these ranges of values as being dynamically
important for forward scattering. Inspection of graphs3t)|
vs J shows that thesé values correspond to highshoulders
on the|Sy(t)| plots. These findings are similar to a NF LAM
analysis of the F- Hy(yi = 0,ji = 0,m = 0) FH(s = 3, js =
3, m = 0) + H reaction aE = 0.3872 eV, which also identified
a highd shoulder on thgS(E)| graph as being dynamically
important for the forward angle scatteriffy.

C. Cumulative Time-Evolving Differential Cross Section.

Figure 4 shows perspective plots of four snapshots taken from

a movie of the cumulative time-evolving differential cross
section,oy(0r,E), for the same values dfused in Figures 2
and 3 [N.B.,01(0r,E) has been multiplied by sifr, cf., Figure
1]. At the first time,t = 29.8 fs, the time-direct mechanism is
starting to be visible at backward angles, althougr,E) is
still small. Byt = 50.3 fs, the direct mechanism is more clearly

visible in the snapshot and the time-delayed scattering is starting

to appear, causing small oscillationsdf(fr,E). At t = 70.1
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