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Nearside-farside (NF) theory, originally developed in the energy domain for the time-independent description
of molecular collisions and chemical reactions, is applied to the plane wave packet (PWP) formulation of
time-dependent scattering. The NF theory decomposes the partial wave series representation for the time-
dependent PWP scattering amplitude into two time-dependent subamplitudes: one N, the other F. In addition,
NF local angular momentum (LAM) theory is applied to the PWP scattering amplitude. The novel concept
of a cumulative time-evolving differential cross section is introduced, in which the upper infinite time limit
of a half-Fourier transform is replaced by a finite time. In a similar way, a cumulative energy-evolving angular
distribution is defined. Application is made to the state-to-state reaction, H+ D2(Vi ) 0, j i ) 0) f HD(Vf )
3, j f ) 0) + D, whereVi, j i andVf, j f are vibrational and rotational quantum numbers for the initial and final
states, respectively. This reaction exhibits time-direct and time-delayed (by about 25 fs) collision mechanisms.
It is shown that the direct-time mechanism is N dominant scattering, whereas the time-delayed mechanism
exhibits characteristics of NF interference. The NF and LAM theories provide valuable insights into the
time-dependent properties of a reaction, as do snapshots from a movie of the cumulative time-evolving
differential cross section.

1. Introduction

Theories of time-dependent (wave packet) and time-inde-
pendent (energy-domain) scattering provide well-established
procedures for understanding the dynamics of chemical reactions
(for recent reviews of the literature, see refs 1-5). A recent
development6-12 is a generalplane waVe packet (PWP)theory
of elastic, inelastic, and reactive scattering (reviewed in ref 13).
It uses time-evolving wave packets to provide a physically
transparent visualizationsincluding moviessfor the results from
energy-domain scattering calculations (and experiments). It does
this by locating a PWP in the entrance channel at the closest
distance for which the interaction potential is negligible, letting
the wave packet evolve in time, and then projecting onto a probe
PWP in the exit channel, again at the closest distance where
the interaction potential can be neglected.6-13 The PWP theory
builds on earlier research using wave packets for reactive
scattering, e.g., refs 14-17.

The PWP formulation provides, with the help of an energy
filter, a time-evolving visualization of adifferential cross section
that has been computed from a time-independent scattering
theory. Furthermore, the PWP theory uses concepts analogous
to those employed in time-independent scattering theory. For
example, the PWP theory employs time-evolving concepts such
as: time-dependent angular distributions, a partial wave series
representation of the time-dependent scattering amplitude, and
time-dependent scattering matrix elements.6-13

Another development in scattering theory in the energy-
domain has been the introduction ofnearside-farside (NF)

methods18-47 to analyze the complicated interference patterns
often observed in differential cross sections under semiclassical
conditions, i.e., when the partial wave series for the scattering
amplitude contains a large number of numerically significant
terms. NF theory decomposes the scattering amplitude exactly
into a N subamplitude plus a F subamplitude, which have sim-
pler properties than the full amplitude. Structure in the angular
scattering can then arise from the N subamplitude, or from the
F subamplitude, or from interference between the N and F
subamplitudes (for reviews, see refs 5, 45, 48). Recently, the
concept of alocal angular momentum (LAM)has been intro-
duced,35,36,38,40which further extends the usefulness of NF tech-
niques for understanding the dynamics of molecular collisions.

The purpose of this paper is to apply NF and LAM theory
(originally developed and applied in the energy-domain) to the
PWP time-evolving description of chemical reactions. The
theoretical methods used in this paper are discussed in section
2. We consider the time-dependent scattering amplitude, its
expansion in a Legendre partial wave series, time-dependent
scattering matrix elements and the time-dependent angular
distribution. We also discuss the Fourier transform relation
between these time-dependent quantities and the corresponding
time-independent quantities. Section 2 also introduces the novel
concepts of acumulatiVe time-eVolVing differential cross section
and acumulatiVe energy-eVolVing angular distributionfor which
upper infinite limits of half-Fourier transforms are replaced by
finite values. Finally we describe how to NF and LAM analyze
the time-dependent scattering amplitude.

The theory developed in section 2, parts A-D, of this paper
is for a general state-to state reaction of the type† Part of the special issue “Donald G. Truhlar Festschrift”.
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whereVi , j i , mi andVf , jf , mf are the vibrational, rotational
and helicity quantum numbers for the initial and final states,
respectively. We apply the theory in section 3 to the reaction

Since both helicity quantum numbers are zero, the time-
dependent scattering amplitude can be expanded in a basis set
of Legendre polynomials (section 2E), which leads to a simpler
development of the NF and LAM theory in section 2, parts F
and G. Our results for the H+ D2 reaction are described and
discussed in section 4. Our conclusions are given in section 5.

We have chosen the H+ D2 reaction because a recent study6

has clearly identified two distinct mechanisms for this reaction
(see also, refs 1, 37, 44-46, and 49). One is a direct-recoil
mechanism, in which H approaches D2 in a mainly collinear
configuration, resulting in HD being scattered into the backward
direction relative to the direction of the incoming H atom. The
other mechanism is dominated by HD being scattered into the
forward direction and is due to a slow down in the translational
motion of the intermediate complex near the reaction barrier,
resulting in a time delay of approximately 25 fs relative to the
time-direct mechanism.6,49 (A complementary explanation can
be given in terms of decaying Regge states37,44-46). These time-
direct and time-delayed mechanisms offer an excellent op-
portunity to make a detailed study of a chemical reaction from
a time-dependent point of view.

2. Theoretical Methods

A. Introduction. Our starting point is the energy dependent-
scattering amplitude,f(θR,E), whereE is the total energy and
θR is the reactive scattering angle, i.e., the angle between the
outgoing AB molecule and the incoming A atom. It is also
convenient for the following analysis to chooseE ) 0 so that
f(θR,E) ≡ 0 for E < 0, i.e., the reactive scattering channel,Vi,
j i, mi f Vf, jf, mf is closed whenE < 0. There are many
computational methods in the literature for calculatingf(θR,E)
over a (finite) range ofE values.1-5 The energy-dependent
differential cross section is given by

Remarks:
(a) We have omitted the labelVi , j i , mi f Vf , jf , mf from

f(θR,E), σ(θR,E) and similar quantities in this paper to keep the
notation simple.

(b) It is common, as is done in sections 3 and 4, to measure
E for a state-to state chemical reaction from the classical
minimum of the BC potential energy curve. Then the state-to-
state reactive scattering channel is closed forE < Ethreshold, where
Ethreshold > 0 is the larger of the rovibrational energies of
BC(Vi, j i ) and AB(Vf , jf ).

B. Time-Dependent Scattering Amplitude.We define a
time-dependent scattering amplitude,f(θR,t), wheret is the time,
by the half-Fourier transform11,12

In eq 2.2,F(E) is a dimensionless complex-valued energy filter
function,11,12which is chosen to extract interesting information

from f(θR,E) and map it to the time domain as given byf(θR,t).
The filter function used in section 3 has the propertyF(E) f 0
as E f ∞. Note that different choices forF(E) will generate
different f(θR,t).

It is also convenient in eq 2.2 to chooset ) 0 as a time before
A and BC have interacted. We can then assumef(θR,t) ≡ 0 for
t < 0. As t increases in eq 2.2, the exponential factor in the
integrand will oscillate faster and faster, andf(θR,t) f 0 ast f
∞ by the Riemann-Lebesgue Lemma50 [assumingF(E) and
f(θR,E) are well behaved]. Thus, in a numerical calculation, we
only expectf(θR,t) to be significantly different from zero for
0 < t < tmax , wheretmax is a time at which the reaction has
finished and AB and C are no longer interacting.

SinceF(E) is dimensionless, eq 2.2 shows thatf(θR,t) has
dimensions oflength× energy, unlike f(θR,E) which has the
usual dimensions oflength. However to keep the notation
simple, we use the same symbolf for the different functions
f(θR,E) and f(θR,t) and distinguish them by their differing
arguments. This convention is also adopted in the paper for other
physical quantities in the energy and time domains.

By analogy with the differential cross section, eq 2.1, we
also define

Sinceσ(θR,t) has dimensions oflength2 × energy2 rather than
length2, we will not call σ(θR,t) a “time-dependent differential
cross section”; instead, we will use the terms “time-dependent
angular distribution” or “time-dependent scattering pattern”.

The inverse Fourier transform of eq 2.2 is

Equation 2.4 can be used in an alternative formulation of the
theory in which the starting point isf(θR,t).11-13 In the limit,
E f ∞, the integral in eq 2.4 will tend to zero by the Riemann-
Lebesgue lemma50 [assumingf(θR,t) is well behaved]. However,
in this limit we also haveF(E) f 0, resulting in the
indeterminate form 0/0 and a more detailed investigation is
necessary to find the limiting behavior off(θR,E).

It is well-known there is no universal convention in the
literature for a Fourier transform and its inverse. In our
derivations above and below, the following form is convenient
to use. If

then

C. Cumulative Time-Evolving Differential Cross Section.
We next define a cumulative time-evolving scattering amplitude
by modifying eq 2.4 to

The corresponding cumulative time-evolving differential cross
section is then

A + BC(Vi , j i , mi ) f AB(Vf , j f , mf ) + C

H + D2(Vi ) 0, j i ) 0, mi ) 0) f

HD(Vf ) 3, j f ) 0, mf ) 0) + D

σ(θR,E) ) |f(θR,E)|2 (2.1)

f(θR,t) ) ∫0

∞
F(E)f(θR,E) exp(-iEt/p) dE

(N.B., dimensions) length× energy) (2.2)

σ(θR,t) ) |f(θR,t)|2 (2.3)

f(θR,E) ) 1
2πpF(E)

∫0

∞
f(θR,t) exp(iEt/p) dt

(N.B., dimensions) length) (2.4)

G(t) ) 1

(2πp)1/2∫-∞

∞
g(E) exp(-iEt/p) dE (2.5)

g(E) ) 1

(2πp)1/2∫-∞

∞
G(t) exp(iEt/p) dt (2.6)

ft(θR,E) ) 1
2πpF(E)

∫0

t
f(θR,t′) exp(iEt′/p) dt′

(N.B., dimensions) length ) (2.7)
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Note thatft(θR,E) f f(θR,E) andσt(θR,E) f σ(θR,E) ast f ∞.
The definitions (2.7) and (2.8) allow us to see how features in
σ(θR,E) arise asσt(θR,E) evolves fromt ) 0 to t ) ∞. In
particular, ifσt(θR,E) is plotted at different time steps, we can
create a movie in which each frame corresponds to each time
step and hence see visually howσt(θR,E) evolves ast f ∞ (in
practice tot ) tmax ).

It is important to note thatft(θR,E) andσt(θR,E) shouldnot
be interpreted as the scattering amplitude and differential cross
section respectively at a fixed timet and a fixed energyE, as
this would contradict the energy-time uncertainty relation.51

In fact ft(θR,E) contains contributions from many energies. This
can be seen by substituting eq 2.2 into eq 2.7, which gives

Whent is close to zero in eq 2.9, the exponential factor is slowly
oscillating, and many energies will make a significant numerical
contribution to the rhs. Ast increases, the exponential factor
oscillates faster and the contributing energies become concen-
trated aroundE′ ) E, until for t f ∞ the integrand becomes
proportional to a delta function inE′ - E and the only
contributing energy isE′ ) E.

D. Cumulative Energy-Evolving Angular Distribution. In
a similar way, we can use eq 2.2 to define a cumulative energy-
evolving scattering amplitude

and a cumulative energy-evolving angular distribution

We could use eqs 2.10 and 2.11 to study howσE(θR,t) evolves
in energy fromE ) 0 to E ) Emax, for example. However, this
way of understanding the dynamics of chemical reactions is
probably less useful than the concept of the cumulative time-
evolving differential cross section described in section 2C. Note
that the rhs of eq 2.11 contains contributions from a spread of
times [as substituting eq 2.4 into eq 2.11 shows].

E. Partial Wave Series.In our application to the H+ D2

reaction in sections 3 and 4, the helicity quantum numbersmi

and mf for the transition are both equal to zero. This means
that f(θR,E) can be expanded in a basis set of Legendre
polynomials. We can write

or

wherek(E) is the initial translational wavenumber,J is the total
angular momentum quantum number,S̃J(E) ) exp(iπJ)SJ(E) is
a modified energy-dependent scattering matrix element and
PJ(•) is a Legendre polynomial of degreeJ.

In a similar way, we can make a partial wave expansion for
f(θR,t) by writing11-13

where S̃J(t) is a modified time-dependent scattering matrix
element [N.B., nok(E) on the rhs of eq 2.13]. Substituting eqs
2.12 and 2.13 into eq 2.2 leads to

Using eqs 2.5 and 2.6, the inverse Fourier transformation of eq
2.14 is

We can also define cumulative energy-evolving and cumula-
tive time-evolving scattering matrix elements by replacing the
infinite upper limits in eqs 2.14 and 2.15 byE andt respectively.
For example

with S̃J
(∞)(E) ≡ S̃J(E). The cumulative time-evolving scattering

amplitude,ft(θR,E), is then given by the partial wave expansion

F. Nearside)Farside Theory. It is often found thatσ(θR,E),
when plotted vsθR at a fixed E, possesses a complicated
interference structure, which contains important information on
the reaction dynamics. A common difficulty in trying to
understand the physical origin of this interference structure is
that the partial wave series (eq 2.12) contains a large number
of numerically significant terms under semiclassical conditions.
In this situation, it can be helpful to apply a nearside-farside
(NF) decomposition tof(θR,E).19-40

We now show that NF theory can also be applied tof(θR,t)
and hence used to provide physical insight into structure seen
in σ(θR,t) when it is plotted vsθR at fixed values oft.

The NF decomposition off(θR,t) is given by19-40

where the NF time-dependent subamplitudes are

with (θR * 0,π)

and QJ(cos θR) is a Legendre function of the second kind of
degree J. The corresponding NF time-dependent angular
distributions are (θR * 0,π)

f(θR,t) )
1

2i
∑
J)0

∞

(2J + 1)S̃J(t)PJ(cosθR) (2.13)

S̃J(t) ) ∫0

∞ F(E)

k(E)
S̃J(E) exp(-iEt/p) dE

(N.B., dimensions) length× energy) (2.14)

S̃J(E) ) 1
2πp

k(E)

F(E)
∫0

∞
S̃J(t) exp(iEt/p) dt

(N.B., dimensionless) (2.15)

S̃J
(t)(E) ) 1

2πp

k(E)

F(E)
∫0

t
S̃J(t′) exp(iEt′/p) dt′

(N.B., dimensionless) (2.16)

ft(θR,E) )
1

2ik(E)
∑
J)0

∞

(2J + 1)S̃J
(t)(E)PJ(cosθR) (2.17)

f(θR,t) ) fN(θR,t) + fF(θR,t) (2.18)

fN,F(θR,t) )
1

2i
∑
J)0

∞

(2J + 1)S̃J(t)QJ
(-)(cosθR) (2.19)

QJ
(-)(cosθR) ) 1

2[PJ(cosθR) ( 2i
π

QJ(cosθR)] (2.20)

σt(θR,E) ) |ft(θR,E)|2 (2.8)

ft(θR,E) ) 1
2πpF(E)

∫0

t
dt′∫0

∞
dE′F(E′)f(θR,E′)

exp[i(E - E′)t′/p] (2.9)

fE(θR,t) ) ∫0

E
F(E′)f(θR,E′) exp(-iE′t/p) dE′

(N.B., dimensions) length× energy) (2.10)

σE(θR,t) ) |fE(θR,t)|2 (2.11)

f(θR,E) )
1

2ik(E)
∑
J)0

∞

(2J + 1)SJ(E)PJ(cos(π - θR))

f(θR,E) )
1

2ik(E)
∑
J)0

∞

(2J + 1)S̃J(E)PJ(cosθR) (2.12)
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In many cases,σN(θR,t) or σF(θR,t) vary more slowly withθR

(at a fixedt) than doesσ(θR,t), which enables one to identify
angular regions of N or F dominance or regions where there is
NF interference. The results of a NF decomposition forf(θR,t)
are reported in section 4 at four values oft.

G. Local Angular Momentum Analysis. Local angular
momentum (LAM) analysis is a new procedure for extracting
physical information from a partial wave series.35,36,38,40The
LAM is the value of the total angular momentum variable that
mainly contributes to the scattering at a givenθR. For f(θR,E),
it is defined by35,36,38,40

where the arg in eq 2.22 is not necessarily the principal value
in order that the derivative be well-defined. By analogy with
eq 2.22, we can define a LAM forf(θR,t): it is given by

In general, LAM(θR,t) ∉ {J ) 0,1,2,...}; instead, LAM(θR,t) is
real (positive or negative).

It is found in section 4 that LAM(θR,t) often possesses a
complicated interference pattern when plotted againstθR at fixed
t. It is then useful to define N and F LAMs for the N and F
subamplitudes, respectively. We have

Positive values of LAM(θR,t) can be identified with the
anticlockwise motion of travelling angular waves around the
reaction zone and negative values to their clockwise mo-
tion.35,36,38,40This means that positive and negative LAM(θR,t)
values can be attributed to F and N dominance, respectively,
and in general to attractive and repulsive forces, respectively.
This leads to a useful property of a NF LAM analysis: it should
in general be consistent with, and in certain cases clarify, the
findings of a NF analysis of the angular distributions, as already
described in section 2F.

3. Calculations

We performed scattering calculations for the state-to-state
reaction, H+ D2(Vi ) 0, j i ) 0, mi ) 0) f HD(Vf ) 3, jf ) 0,
mf ) 0) + D, using the potential energy surface number 2 of
Boothroyd et al.52 with masses ofmH ) 1.008 u andmD )
2.014 u. First, we computedS̃J(E) for J ) 0 (1) 30 on the energy
grid, E ) 1.52(0.01)2.50 eV. HereE is measured with respect
to the classical minimum of the D2 potential energy curve. Since
the rovibrational energy,E(Vi,j i), of D2(Vi ) 0, j i ) 0) is 0.192
eV and the rovibrational energy,E(Vf,jf), of HD(Vf ) 3, jf ) 0)
is 1.520 eV, the reaction is closed forE < 1.520 eV. The energy-
domain scattering matrix elements were computed by a state-
to-state wave packet method developed by one of us.53 In
particular, the reactant-product decoupling equations were solved
in a form that partitions the Schro¨dinger equation for reactive
scattering into reactant, strong interaction and product regions.
This method has been applied to a variety of chemical reactions
in refs 6-10, 12, 18, and 53-58.

Second, we interpolated the modulus and phase ofS̃J(E) and
then evaluatedS̃J(t) numerically from the half-Fourier transform
(eq 2.14) for the time grid 0, 0.48 (0.68), 150 fs. The filter
function,F(E), is given by11,12

whereki(E) andzi are the initial translational wavenumber and
distance, respectively, and likewise for the final quantities,
kf(E), zf. We setzi ) 6 a0 in eq 2.25; this value localizes the
center of the initial PWP at a distance of-6 a0 on thez axis
with a width determined by|F(E)|. In addition, we used the
valuezf ) 6 a0 which distributes the centers of the probe PWPs
around a sphere of radius 6a0 in the exit channel. In addition,
ks(E) ) {2µX,YZ[E - E(Vs,js)]}1/2/p, with s ) i, f where µX,YZ

) mX(mY + mZ)/(mX + mY + mZ) is the reduced mass of the
X + YZ channel. The function,g(E) is a distributed ap-
proximating functional (DAF) defined by11,12

with parametersM ) 88, E0 ) 1.65 eV, andσ ) 1/0.07 eV-1,
which is a constant not related to the cross section. This DAF
is approximately unity from the opening of the reaction channel
atE ) 1.520 eV toE ) 2.2 eV when it decreases monotonically
to approximately 10-4 at E ) 2.5 eV. As an additional check
on our numerics, we regenerated{S̃J(E)} by applying the inverse
Fourier transform (eq 2.15) to the{S̃J(t)}.

Finally we calculated the full and NF time-dependent
scattering amplitudes from their partial wave series representa-
tions, eqs 2.13 and 2.19. The full and NF time-dependent LAMs
are then obtained from eq 2.23 and 2.24 respectively, with the
full and NF time-dependent angular distributions being given
by eqs 2.3 and 2.21 respectively. The cumulative time-evolving
scattering amplitude, (2.7), also requires an additional quadrature
over time in order to compute the cumulative time-evolving
differential cross section, (2.8). We found it convenient to use
the partial wave representation, eqs 2.16 and 2.17, to accomplish
this, by numerically evaluating theS̃J

(t)(E) for J ) 0, 1, 2, ...,
30 at different timest.

4. Results

A. NF Analysis of Time-Dependent Angular Distributions.
Perspective plots ofσ(θR,t) sin θR and σN,F(θR,t) sin θR are
shown in Figure 1 fromt ) 0 fs to t ) 99.5 fs. The angular
distributions have been multiplied by sinθR in order to contain
large features in the scattering6,7 close toθR ) 0° and θR )
180°. Time slices of Figure 1 for the logarithm of the full and
NF angular distributions att ) 29.8, 50.3, 70.1, and 102.2 fs
are displayed in Figure 2 (N.B., no sinθR factor).

Figure 1 shows that the reaction starts att ≈ 20 fs with a
large peak appearing at backward angles fort ≈ 35 fs. As t
increases, the backward peak disappears and the scattering
moves toward the forward direction, with a large oscillatory
peak being present fort ≈ 60 fs, i.e., a time delay of about 25
fs relative to the direct scattering. Ast increases further, the
forward peak also disappears and the reaction is essentially over
by t ) 99.5 fs. The perspective plots fort > 99.5 fs tot ) 150
fs look the same as those fort ) 99.5 fs.

Figure 2a shows that the backward peak att ) 29.8 fs is N
dominated. This is the expected behavior for direct (i.e., short-
time) reaction dynamics. Indeed, an approximate N theory, the

σN,F(θR,t) ) |fN,F(θR,t)|2 (2.21)

LAM( θR,E) )
d(argf(θR,E))

dθR
(2.22)

LAM( θR,t) )
d(argf(θR,t))

dθR
(2.23)

LAM N,F(θR,t) )
d(argfN,F(θR,t))

dθR
(2.24)

F(E) ) 1

2x2π
g(E) exp{i[ki(E)zi + kf(E)zf]} (2.25)

g(E) ) exp(-Eh2)∑
m)0

M/2

Eh2m/m!, Eh2 )
1

2
(E - E0)

2σ2
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semiclassical optical model,21,29,34has successfully reproduced
the backward angle scattering in fixed-energy differential cross
sections for several simple reactions, including H+ D2.29

Figures 1c and 2a suggest that the F subamplitude, although
smaller in magnitude than the N subamplitude, also makes a
nonnegligible contribution to the scattering at backward angles.
However, this is likely to be a (well-understood) example25 of
the NF decomposition overestimating the F contribution at
backward angles. The overestimation arises because the NF
cross sections diverge logarithmically asθR f 180°. This causes
the F angular distribution to increase in the backward direction
rather than to decrease, and as a consequence, for 154° j θR j
178°, the N angular distribution is reduced in magnitude, before
it too diverges forθR J 178°. We have found that a resum-
mation35,36,38of the partial wave series (eq 2.13) “cleans” the
NF curves in Figure 2a of nonphysical oscillations, thereby
improving the usefulness of the NF decomposition; this will be
illustrated and discussed in a future paper.

Parts a and b of Figure 2 show that the situation is quite
different for the large time-delayed peak at forward angles where
the N and F angular distributions vary relatively slowly with

θR: it is NF interference between the NF subamplitudes that
gives rise to the pronounced oscillations in the forward direction.
It is likely this oscillatory forward angle scattering can be
interpreted as aglory, since a uniform semiclassical analy-
sis37,39,40 has proven37,46 that a forward glory is present in
σ(θR,E) at E ) 2.00 eV.

At t ) 102.2 fs, Figures 1 and 2d demonstrate that the full
and NF angular distributions have become very small in
magnitude and the reaction is largely over. Nevertheless the
full cross section, although small, still possesses regular
oscillations, in the forward direction, which clearly arise from
NF interference.

B. LAM Analysis of Time-Dependent Scattering Ampli-
tudes. Figure 3 shows plots of LAM(θR,t) and LAMN,F(θR,t)
for the same times as Figure 2, namelyt ) 29.8, 50.3, 70.1,

Figure 1. Perspective plots of (a)σ(θR,t) sin θR, (b) σN(θR,t) sin θR,
and (c)σF(θR,t) sin θR vs θR andt. The plots fort > 99.5 fs tot ) 150
fs look the same as those fort ) 99.5 fs.

Figure 2. Logarithmic plots ofσ(θR,t) (solid line), σN(θR,t) (dashed
line), andσF(θR,t) (dotted line) vsθR for (a) t ) 29.8 fs, (b)t ) 50.3
fs, (c) t ) 70.1 fs, and (d)t ) 102.2 fs.
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102.2 fs. At the first time,t ) 29.8 fs, the full LAM(θR,t) is
negative at most angles and so the scattering is N dominated.
An exception is a small angular region aroundθR ) 145°, where
LAM( θR,t) becomes positive. There is similar behavior at the
three other times, with the scattering usually being N dominated.
Notice that LAMN(θR,t) and LAMF(θR,t) generally vary more
slowly with θR than does LAM(θR,t). Thus, the regular
oscillations present in LAM(θR,t) at forward angles are usually
caused by NF interference. The above LAM interpretation is
confirmed by a resummation35,36,38 of the partial wave series
(2.13) which, as for the NF angular distributions, “cleans” the
NF LAM curves of nonphysical oscillations. When viewing
Figure 3, it should also be remembered35,36,40 that a F LAM
loses its physical significance in angular regions whereσF(θR,t)
is negligible compared toσ(θR,t). On comparing Figures 2 and

3, we see that the NF LAM results are consistent with the NF
analyses of the angular distributions. An advantage of the LAM
analysis is that it is easier to identify angular regions of N or F
dominance, when these are less apparent in the angular
distributions.

Parts b-d of Figure 3 show that the LAMN(θR,t) curves
decrease in magnitude, roughly monotonically, asθR increases
toward 180°. This is the behavior expected for direct repulsive

Figure 3. Plots of LAM(θR,t) (solid line), LAMN(θR,t) (dashed line),
and LAMN(θR,t) (dotted line) vsθR for (a) t ) 29.8 fs, (b)t ) 50.3 fs,
(c) t ) 70.1 fs, and (d)t ) 102.2 fs.

Figure 4. Plots ofσt(θR,E) sin θR vs E andθR for (a) t ) 29.8 fs, (b)
t ) 50.3 fs, (c)t ) 70.1 fs, and (d)t ) 102.2 fs. Note that the scale
along thez-axis of plot a is smaller than the scales of plots b-d, to
allow a more detailed view of the structure.
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interactions of the hard-sphere type. Indeed the N LAMs can
be approximately fitted by the classical-mechanical hard-sphere
relation, LAMN(θR,t) ) -LAM max cos(θR/2). In contrast, the
LAM F(θR,t) curves are approximately constant at forward
scattering angles, with values in the range 26.0-26.8 for Figure
3b and 23.0-27.6 for Figure 3c; i.e., the NF LAM analysis has
identified these ranges ofJ values as being dynamically
important for forward scattering. Inspection of graphs of|S̃J(t)|
vs J shows that theseJ values correspond to high-J shoulders
on the |S̃J(t)| plots. These findings are similar to a NF LAM
analysis of the F+ H2(Vi ) 0, j i ) 0, mi ) 0) FH(Vf ) 3, jf )
3, mf ) 0) + H reaction atE ) 0.3872 eV, which also identified
a high-J shoulder on the|S̃J(E)| graph as being dynamically
important for the forward angle scattering.38

C. Cumulative Time-Evolving Differential Cross Section.
Figure 4 shows perspective plots of four snapshots taken from
a movie of the cumulative time-evolving differential cross
section,σt(θR,E), for the same values oft used in Figures 2
and 3 [N.B.,σt(θR,E) has been multiplied by sinθR, cf., Figure
1]. At the first time,t ) 29.8 fs, the time-direct mechanism is
starting to be visible at backward angles, althoughσt(θR,E) is
still small. By t ) 50.3 fs, the direct mechanism is more clearly
visible in the snapshot and the time-delayed scattering is starting
to appear, causing small oscillations inσt(θR,E). At t ) 70.1
fs, most of the structures are present, with the forward peak
displaying glorylike oscillations. In the final snapshot att )
102.2 fs, the reaction is almost over andσt(θR,E) is in good
agreement with the energy domainσ(θR,E), shown in Figure 2
of ref 6 and in Figure 3 of ref 7. Ridges similar to those in
Figure 4d were originally discussed by Continetti et al.59 (for
D + H2), by Miller and Zhang60 [for H(D) + H2], and by Aoiz
et al.61,62 (for D + H2).

5. Conclusions

We have applied NF and LAM techniques, originally
developed for the analysis of collisions at fixed total energies,
to the PWP theory of time-dependent scattering. This was pos-
sible because the PWP theory employs concepts and form-
ulas analogous to those found in time-independent scattering
theory; in particular the PWP theory uses time-dependent
scattering matrix elements, scattering amplitudes and angular
distributions.

We studied the H+ D2 reaction because it exhibits two
distinct collision mechanisms, separated in time by about
25 fs. We found N dominance for the time-direct mechanism,
where the products scatter into backward angles, whereas there
are NF interference effects in the time-delayed mechanism,
which possesses a large oscillatory forward peak.

We introduced the concepts of a cumulative time-evolving
differential cross section and a cumulative energy evolving
angular distribution. We showed that snapshots from a movie
of the cumulative time-evolving differential cross section
provide an alternative understanding of the time-direct and time-
delayed mechanisms.
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